Position vs. Time Graphical User Interface

Giving Robots (and Students) a Head Start

“So we should just play with this, then!”

This summer, I reprogrammed the Scribbler 2 Robot from Parallax Corporation to be a physics apparatus.  (I intend the robot project itself to be the subject of a future blog post.) This lab practicum is the student’s first opportunity to program a robot themselves. Each group is given two robots, one programmed in advance by me that students studied in their first robot lab, and a second one which they must program themselves through a position vs. time graphical user interface. Students must understand how a position vs. time graph describes motion in order to get the robot to complete the assigned task.

Continue reading

Robot Races

The Robot Lab (formerly known as the Buggy Lab)

Just the simple ability to program the robots with a range of clearly distinct speeds was a productive supplement to the traditional buggy lab.

In physics modeling instruction, the constant velocity particle model begins with a paradigm investigation of the motion of constant-speed buggies. This summer, I reprogrammed the Scribbler 2 Robot from Parallax Corporation to be a physics apparatus , and this was my first chance to use them. (I intend the robot project itself to be the subject of a future blog post.) For the robot lab, I programmed the robots to have speeds from 10cm/s to 18.5cm/s, but all to go 150cm before stopping.

Continue reading

Microcosm

Microcosm (definition): 

a community or other unity that is an epitome of a larger unity (Meriam Webster Dictionary)

I use the word microcosm to refer to a classroom of students acting as scientific investigators to construct and deploy the laws and concepts of physics.  The classroom is a microcosm of the larger scientific community. 

I also use the word microcosm to refer to the use of technology to create a limited physical world, within which students can explore independently and figure things out for themselves.